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Back in the day, our community introduced simplified models 
with the intention of introducing an abstraction layer between the 
raw results and theoretical models.

simplified model

The idea was, that instead of inferring the Next Standard Model (NSM) directly, 
we describe our findings with simplified models, and only then make the 
connection with fundamental theories.

Recap: simplified models    
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They have since served as a useful tool to contextualize our BSM 
searches, to give them a meaning.

Recap: simplified models  

This is one of your typical results.

Of such plots, we can make use of:

● the upper limits – the green and 
red numbers,

● the exclusion lines – to verify 
that we use the information 
correctly

● the “constraint” – the description 
of the simplified model, to 
understand which parts of a full 
theory we can apply the result 
to.

In this talk I will wish to convey 
how efficiency maps and full 
likelihoods majorly increase the 
usefulness of these results
for us.

ATLAS-SUSY-2018-12

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2018-12/figaux_01a.png
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Our Inverse Problem

Obviously, our ultimate goal is not setting limits on 
(unphysical) models. Our ultimate goal must clearly be to 
arrive at a Next Standard Model (NSM), given LHC (and 
other) data.

This is a typical “Inverse Problem”: 
inductive reasoning with no clear recipe for success.

Q: Did we face similar situations in the past?

A: Not really. Our most recent big achievements (top 
discovery, Higgs discovery) were driven by highly predictive
models. Think e.g. of the Higgs mechanism. It only had 
one free parameter, the Higgs mass. Classical hypothesis 
testing works very well in such a setting.

Searching for the NSM is a much more vague endeavour. 
The number of potential models is huge, many models come
with an enormous amount of free parameters.

Hitoshi’s impression of
the theory landscape

How do we envisage we tackle our inverse problem?
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Recap: SModelS                 
S

pe
ed

Constraining power

Simplified
model

Full
simulation

SModelS confronts theories beyond the Standard Model 
(BSM) with LHC search results by decomposing full 
models into their simplified models topologies, and 
comparing the cross section predictions of these individual 
 topologies with a database of SMS results.
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1) Decomposition of a fundamental model

Input: SLHA file (mass 
spectrum, BRs) or LHE 
file (parton level)

Currently the model must 
have a Z

2 
symmetry

The decomposition 
produces a set of 
simplified model 
topologies (dubbed  
“elements”)

Recap: SModelS                 
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2) Description of the topology in the SModelS 
formalism

Each topology is described by:
• Topology shape + final states
• BSM masses
• σ x BR

We (currently) ignore spin, color, etc of the 
BSM particles

It is model independent, there is no 
reference to the original model

Recap: SModelS                 
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3) Matching elements with a database of ~ 50 ATLAS and ~ 
50 CMS results

Recap: SModelS                 

Work is in progress to cover wider range of
experimental signatures, like LLPs, HSCPs, etc.
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SModelS: input data
So what information goes into the database and how useful is what type of info?
● Only exclusion lines

If only exclusion lines are given, without upper limits, we can do nothing

● Observed 95% CL upper limits only:
cannot construct likelihood, binary decision “excluded” / “not-excluded” only

● Expected and observed 95% CL upper limits
can construct an approximate likelihood with truncated Gaussian

● Efficiency maps
can construct a better likelihood as Gaussian (for the nuisances) * Poissonian (for 
counting events in signal regions)

● Cutflow tables, ADL descriptions
can produce “home-grown” efficiency maps via recasting frameworks (MA5, 
CutLang)

● Efficiency maps + simplified likelihoods
can combine signal regions via multivariate Gaussian * Poissonians

● Efficiency maps + pyhf likelihoods
can combine signal regions, in the long run potentially even analyses 

Li
ke

lih
oo

ds
C

om
bo

s
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efficiency maps:

Apart from the very approximate likelihood obtained from expected+observed ULs, 
efficiency maps are needed. Often ATLAS and CMS provides them (thanks a ton!). 

We can use all efficiency maps (per SR)
given for “basic” simplified models. 
Efficiency maps for models with two or more 
cascade decays, and efficiency maps with 
“mixed” branchings will not enter the 
SModelS database.

While you guys need good showcases of
simplified models and “mass planes”,
we need good coverage: 
we are thus interested in also very extreme 
masses (high and low), and the whole
phase space of particle masses (and widths, for LLP scenarios).

“Holes” in the maps can be a problem for us.
ATLAS-SUSY-2018-16

Phys. Rev. D 101 (2020) 052005

SModelS: input data

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2018-16/
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.052005
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“home-grown” efficiency maps:

For the analyses without official efficiency maps, not all hope is lost for us. If there is a good
description of the analyses with cut flow tables, or an ADL description (I come to that later), 
we can recast the analysis and produce the efficiency maps ourselves. Needless to say, 
we dont recast perfectly so this introduces another error – we prefer your maps.

Our “home-grown” efficiency maps reduced the gap between our exclusion power 
and ATLAS’ exclusion power, for the pMSSM.

ATLAS’ constraining 
power

SModelS’ power with 
home-grown maps

SModelS’ power without 
home-grown maps

SModelS: input data
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“home-grown” efficiency maps with ADL

Recently we have started to adopt the Analysis Description Language (ADL), which 
decouples the physics algorithm of an analysis from the analysis framework.  If we have an 
ADL description of an analysis, we can produce efficiency maps for it, via tools that parse 
an ADL and run the analysis, e.g. “CutLang”.

https://arxiv.org/abs/1605.02684

https://arxiv.org/abs/1803.10379

https://arxiv.org/abs/1801.05727

https://arxiv.org/abs/1909.10621

SModelS: input data

But even if we have all efficiency maps in the world,
we “underexclude”, because we cannot combine signal 
regions with this information only, …..

https://arxiv.org/abs/1605.02684
https://arxiv.org/abs/1803.10379
https://arxiv.org/abs/1801.05727
https://arxiv.org/abs/1909.10621
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Likelihoods

 CMS-NOTE-2017-001

Simplified likelihood, v2: a skewness term was proposed to allow for asymmetrical 
distributions.

arXiv:1809.05548 

Simplified likelihood, v1: All nuisances summarized in a single “all 
enveloping” multivariate Gaussian that “connects” all signal regions (which 
are Poissonian counting variables):

Simplified likelihoods were introduced in 2017/2018 by CMS members. They are composed 
of individual Poissonians to model the counts in each signal region, together with a single 
multivariate Gaussian to model the envelope of all nuisances and the correlations between 
the signal regions.

Later, a skewness term was added.

JHEP 04 (2019) 064

https://cds.cern.ch/record/2242860
https://arxiv.org/abs/1809.05548
https://link.springer.com/article/10.1007/JHEP04(2019)064
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Simplified likelihoods

For the first time in SModelS we could perform non-trivial combinations of signal regions.
This significantly improved the constraining power of an analysis in SModelS:

Improvement coming from combining signal regions via simplified likelihoods

SModelS: input data
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Efficiency maps and pyhf

And now we have pyhf. Starting with SModelS v1.2.4, we will officially support it.

SModelS preliminary

https://github.com/scikit-hep/pyhf

doi:10.5281/zenodo.1169739

ATLAS result with two signal regions, showing a “poor person’s combination” – best 
expected SR on the left. Combination via pyhf on the right: we can reproduce your official
exclusion lines.

best SR
pyhf

SModelS: input data

https://github.com/scikit-hep/pyhf
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Efficiency maps and pyhf

https://github.com/scikit-hep/pyhf

doi:10.5281/zenodo.1169739

ATLAS result with eight signal regions, showing a “poor person’s combination” – best 
expected SR on the left. Combination via pyhf on the right.

pyhfbest SR

SModelS preliminary

SModelS preliminary

SModelS: input data

https://github.com/scikit-hep/pyhf
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Once we have likelihoods, the question arises: which of the 100 analyses in our database 
can be combined – which are approximately uncorrelated, and which are not.

E.g. In good approximation, we can safely combine results from different runs and different 
experiments. We cannot combine results for which we have no likelihoods.

The matrix on the right was determined by 
eye – by looking at descriptions 
of the final states in the signal regions: 
Error-prone and ineffective!

Les Houches efforts have started to
determine this matrix in an automated way, 
making use of MadAnalysis5 and ADL.

(This is a simplified, “binary” version of a 
matrix that CMS and ATLAS need for their 
internal combination efforts. Is it conceivable 
that the experiments publish such a 
correlation matrix? Alternatively, if we had 
pyhf likelihoods for many results, we could 
construct this ourselves)

https://phystev.cnrs.fr/wiki/2019:groups:tools:correlations.

prelim
inary

correlations, combinations

https://phystev.cnrs.fr/wiki/2019:groups:tools:%0Acorrelations.
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Proto-models
One thing we have recently been working on in SModelS – apart from extending the 
framework to scenarios with long-lived particles – is setting up an algorithm that finds 
potentially dispersed signals in the SModelS database – signals that only become evident
when combining all data.
It does so by “stacking up” simplified models (dubbed “proto-models”) to build potential 
precursors of the NSM, constructed from the SModelS database.

http://www.hephy.at/user/wwaltenberger/models/mcmc.webm

to appear on arXiv hopefully soon

http://www.hephy.at/user/wwaltenberger/models/mcmc.webm
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Proto-models
One thing we have recently been working on in SModelS (apart from extending the 
framework to scenarios with long-lived particles), setting up an algorithm that finds 
potentially dispersed signals in the SModelS database, while respecting all SMS constraints. 
It does that by “stacking up” simplified models in an MCMC-type walk, and checking if there 
are hints for a dispersed signal in “legal” combinations of results.

Possible actions being taken within the MCMC walk:

● randomly add a particle

● randomly remove a particle

● randomly change a branching

● randomly change a signal strength multiplier

● ….

http://www.hephy.at/user/wwaltenberger/models/mcmc.webm

http://www.hephy.at/user/wwaltenberger/models/mcmc.webm
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Proto-models

A critic makes sure the proto-model is consistent with 
all SMS results (a “workaround” b/c we dont have
inter-analysis correlations)
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Proto-models

The overall vision of this being that instead of postulating NSM candidates and then 
falsifying them (or failing to do so), we put the model building into the statistical procedure 
itself. A slow, bottom-up  procedure, starting from data.

prelim
inary

prelim
inary

Identifying a potential dispersed signal and constructing a 
theoretical context for it that is consistent with all SMS results.
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Proto-models

The overall vision of this being that instead of postulating NSM 
candidates and then falsifying them (or failing to do so), we put the 
model building into the statistical procedure itself. A slow, bottom-up 
 procedure, starting from data.
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Proto-models

But our MCMC walk is but a crutch, a burden we must carry 
because we do not have derivatives, i.e. gradients and Hessians. 

If we had gradients we could instead perform gradient descent to 
find the best model, and we could use the Fisher information to 
infer the error on its parameters.

So, how about we make the whole chain differentiable?
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Differentiable induction
Our MCMC walks are but a crutch, a burden we must carry because we do not have 
derivatives, i.e. gradients and Hessians. 

If we had gradients we could instead perform gradient descent to find the best model, and we could 
use the Fisher information to infer the error on its parameters (if you want non-Gaussian posteriors 
you can then still MCMC-sample if you wish).

So, how about we make the whole chain differentiable?

Needless to say, the data pipeline sketched above is not the only feasible one.
Differentiability however would be a helpful tool for all possible data pipelines.
A similar rationale would apply also to EFTs, Wilson coefficients and data from 
measurements.

described as likelihoods L that are 
differentiable with respect to the 
yields y

i

we have started an effort 
to make SModelS 
differentiable w.r.t SMS 
parameters p

j
, by learning 

our entire database: 

for individual candidates we can make this 
differentiable w.r.t fundamental parameters 
Θ

l
, via neural networks, with efforts similar to 

DeepXS, or “TheoryGANs” [*]:

thats just a sum of
simplified models → 
differentiable!

https://arxiv.org/abs/1810.08312

. . .

https://arxiv.org/abs/1810.08312
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All of this is to say, that we realistically can try to “learn” 
the fundamental laws of the universe from data, as 
opposed to postulating them. Gradient-free for starters,
adding gradients in the long run:

“differentiable inductive reasoning”, if you wish.

Thanks for your attention!

. . .

“Reinterpretation of LHC Results for New Physics: Status and Recommendations 
after Run 2”, community-wide effort, signed also by a few ATLAS members, 
2003.07868

https://arxiv.org/abs/2003.07868
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  27“Reinterpretation of LHC Results for New Physics: Status and Recommendations 
after Run 2”, community-wide effort, signed also by a few ATLAS members, 2003.07868

https://arxiv.org/abs/2003.07868


  28“Reinterpretation of LHC Results for New Physics: Status and Recommendations 
after Run 2”, community-wide effort, signed also by a few ATLAS members, 2003.07868

https://arxiv.org/abs/2003.07868
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observed and expected 95% CL upper limits:

If in addition to the observed 95% limits we are also being given the expected limits, we
can construct an approximate likelihood as a truncated Gaussian:

https://arxiv.org/abs/1202.3415

https://arxiv.org/abs/1202.3415
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Second new SModelS ingredient: 
model builder

● currently a Metropolis-Hastings-type random walk in the space of all models that can be described 
with semantically correct SLHA files (actually currently only a subset).

● in the future will want to try a neural network that learns “Z”. Should be faster, as long was we want 
only central values, and not complete distributions.

● We begin with the standard model, all BSM particles being “frozen out” 
(put to high masses). We then take 
random steps in model space. 
Possible random steps:

● freezing a particle out
● unfreezing a particle
● changing a particle’s mass
● changing a particle’s branchings
● changing a particle’s signal strength 

modifier
(we use the NLO SUSY cross sections for defaults)

● All models need to obey all (relaxed) 
SModelS exclusions. So both antagonists 
(the “excluder” and the “excess finder”) 
experience the same biasses 
from the incomplete SModelS database.

● We can punish the algorithm for 
introducing new particles.

http://www.hephy.at/user/wwaltenberger/models/mcmc.webm

http://www.hephy.at/user/wwaltenberger/models/mcmc.webm
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SModelS confronts theories beyond the Standard 
Model (BSM) with LHC search results by decomposing 
full models into their simplified models topologies, and 
comparing the cross section predictions of these 
individual  topologies with a database of SMS results.

Recap: the Idea behind 
SModelS                 

S
pe

ed

Constraining power

Simplified
model

Full
simulation
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Recap: How SModelS 
works
1) Decomposition of a fundamental model

Input: SLHA file (mass 
spectrum, BRs) or 
LHE file (parton level)

Currently the model 
must have a Z

2 

symmetry

The decomposition 
produces a set of 
simplified model 
topologies (dubbed  
“elements”)
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3) Comparison of predicted signal strengths
with experimental result:

• Upper Limit Results:
Predicted signal strength = σ x BR
Experimental result:  σ

UL

• Efficiency Map Results:
Predicted signal strength = ∑  σ x BR 
x ε
Experimental result: σ

UL
=N

UL
/ L  from 

N
observed

, expected(BG), error(BG)

• r = predicted  /  σ
UL 

• Model is excluded if most 
constraining analysis has r > 1 

Recap: How SModelS 
works
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