Application of CMS and ATLAS Simplified Models Results to Theories Beyond the Standard Model (BSM)

Ursula Laa¹ with Sabine Kraml², Suchita Kulkarni², Andre Lessa³, Doris Proschofsky¹, Wolfgang Waltenberger¹

¹HEPHY, Vienna

²LPSC Grenoble

³USP São Paulo

ÖPG/SPS Annual Meeting 2013 September 04, 2013

Simplified Models - Application

ÖPG/SPS 2013 1 / 15

Interpreting SUSY Searches

The full Minimal Supersymmetric Standard Model (MSSM) has more than 100 free parameters

 \Rightarrow interpret results in a constrained model, for example:

- constrained MSSM (cMSSM) (4 parameters + one sign free)
- phenomenological MSSM (pMSSM) (19 parameters free)

(see e.g. Djouadi et al, arxiv:hep-ph/9901246 (1998); Berger et al, JHEP 0902, 023 (2009); AbdusSalam et al, Phys. Rev. D 81, 095012 (2010))

BUT: many mass patterns and signatures not covered by cMSSM and pMSSM has a large parameter space

 \Rightarrow alternative approach: Simplified Models Spectra

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ののの

Idea of Simplified Models Spectra (SMS)

Idea: characterize new physics using effective Lagrangians, consider only a reduced set of particles

Parameters:

- phenomenologically observable masses,
- production cross sections and
- decay modes of the candidate new particles

Each event can be associated with a diagram, for example the T1tttt topology:

Experimental Results

SUSY search results from CMS, ATLAS are interpreted in terms of Simplified Models \rightarrow maps of upper limits on production cross sections

SModelS Idea

SModelS – a collaboration of phenomenologists and experimental physicists Goal: make systematic use of the Simplified Models results \rightarrow introduce SModelS formalism

Ingredients:

- database of experimental SMS results
- generic decomposition scheme that can decompose arbitrary fundamental models
- describe experimentally considered SMS in the language of SModelS (so in terms of conditions and constraints)
- compare a fundamental theory to the experimental results through the SModelS formalism

Database

Store upper limit maps, make the associated information accessible

Information stored in one database entry:

- map of upper limits on cross sections
- analysis name and reference
- center-of-mass energy, integrated luminosity
- SMS topology name
- SModelS description in terms of constraints, conditions

Current status: about 30 analyses included

ELE SQC

Constraints

Generalize language of topologies for systematic application of SMS results. Analyses are relatively insensitive to quantum numbers other than masses \rightarrow first approximation: BSM particles are fully described by their mass.

In that language, a topology is described by an abstraction of the associated diagrams, defined by the outgoing SM particles.

Conditions

Constraints tell us, what parts of a theory an experimental result can be applied to. In this example: those parts that produce two decay branches with two vertices with two top quarks from each vertex (plus missing energy)

However: depending on the assumptions made by an analysis, there may be additional conditions that need to be fulfilled in order for the experimental result to be applicable

 \Rightarrow express these implicit assumptions as Conditions

Example for Constraints and Conditions

The analysis assumes flavor democracy for all three generations on the second branch \rightarrow general expression for e, μ,τ in the Constraint Constraint: [[[nu],[tau]],[[L],[L]]]

BUT: different efficiencies for the different flavors \to experimental upper limit not applicable if there are too many taus in the theory. This gives

 $\label{eq:condition: [[[nu], [tau]], [[L], [L]]] > 3 [[[nu], [tau]], [[tau], [tau]]]}$

SModelS SModelS description

How it works

Application to a simple model

First application: random scan over a simple test model Test model: simplified version of the pMSSM, with the parameters

Parameter	Range	Description		
M1	100 - 1000 GeV	Gaugino mass		
M01	0 - 3000 GeV	first/ second generation sfermion		
M03	0 - 1000 GeV	third generation sfermion		
MA	100 - 2000 GeV	Pseudoscalar Higgs		
μ	100 - 1000 GeV			
aneta	2 - 50			
Ab	-1000 - 1000 GeV	Trilinear coupling, sbottom		
Atau	-1000 - 1000 GeV	Trilinear coupling, stau		
At	−3 - 3∗M03	Trilinear coupling, stop		

ÖPG/SPS 2013

Image: A matrix

11 / 15

Evaluating the model

We consider only points that:

- satisfy the LEP constraints on sparticle masses
- produce a Higgs boson within a mass window of [123 GeV,128 GeV]
- ullet comply with the low energy observables bightarrows γ , B $_s
 ightarrow \mu^+\mu^-$

To get an idea of the results we can obtain: look at the results for direct stop decay (T2tt) compare the cross sections to the experimental upper limits

12 / 15

T2tt - Where to look

T2tt - What we find

nodel points in which T2tt is > 25% of the total SUSY cross section

Conclusion

We have:

- created an extensive database of SMS results
- created a formalism to systematically compare theories to these results
- applied the formalism to a simple test model

Next Steps:

- apply the results to different SUSY models (e.g. natural SUSY)
- apply the results to other models (e.g. UED)

Image: Image:

analysis	\sqrt{s}	lumi	topologies	constraints
ATLAS-CONF-2012-105	8	5.8	T1tttt	[[[t+,t=]],[[t+,t=]]]
ATLAS-CONF-2012-166	8	13.0	T2tt	
			T6bbWW	[[[b],[W]],[[b],[W]]]
ATLAS-CONF-2013-001	8	12.8	T2bb	[[[b]],[[b]]]
ATLAS-CONF-2013-007	8	20.7	Tittt	$[[[t+,t_{r}]],[[t+,t_{r}]]]$
			T1tbtb	[[[t,b]],[[t,b]]]
			T5WW	[[jet,jet],[W]],[jet,jet],[W]]]
ATLAS-CONF-2013-024	8	20.5	T2tt	[[[t]],[[t]]]
ATLAS-CONF-2013-025	8	20.7	T6ttZZ	[[Z], [t], [Z], [t]]]
ATLAS-CONF-2013-028	8	20.7	TChiChipmStauL	2.*([[nu],[ta]],[[ta+],[ta-]]) + [[[]])
			TChipChimStauSnu	[[[ta-],[nu]],[[nu],[ta+]]] + [[[ta+]
ATLAS-CONF-2013-035	8	20.7	TChiWZ	[[[W]],[[Z]]]
			TChiC hipmSlepL	2.*([[L],[L]],[L],[m]]) + [[[L],[L]])
ATLAS-CONF-2013-036	8	20.7	TChiChiSlepSlep	[[1+], [1+]], [1+], [1+]] + [[1+], [1+]
ATLAS-CONF-2013-037	8	20.7	T2tt	[[[t]],[[t]]]
			T6bbWW	[[[b],[W]],[[b],[W]]]
ATLAS-CONF-2013-049	8	20.3	TSlepSlep	[[[e+]],[[e-]]]+[[[mu+]],[[mu-]]]
ATLAS-CONF-2013-053	8	20.1	T2bb	[[[b]],[[b]]]
ATLAS-CONF-2013-061	8	20.1	T1tbtb	[[[t,b]],[[t,b]]]
			T1bbbb	[[[b,b]],[[b,b]]]
			Tittt	$\left[\left[\left[t,t\right]\right],\left[\left[t,t\right]\right]\right]\right]$
ATLAS-CONF-2013-062	8	20.0	T2bb	[[[b]],[[b]]]
				Oleb-MO
				21VIQUEI2
				w/ ~ \w

Ursula Laa (HEPHY)

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・ の へ ()

analysis	\sqrt{s}	lumi	topologies	constraints	
SUS-13-011	8	19.5	T2tt	[[[t]],[[t]]]	
			T6bbWW	[[b], [W]], [b], [W]]]	
SUS-12-006	7	4.98	T ChiWZ	[[W]],[[Z]]]	
SUS-11-013	7	4.98	T ChiWZ	[[[W]],[[Z]]]	
SUS-12-026	8	9.2	Tlutt	[[[t+,t-]],[[t+,t-]]]	
SUS-12-011	7	4.98	T2	[[jet]],[[jet]]]	
SUS-13-012	8	19.5	Τ2	[[jet]],[[jet]]]	
			T1	[[]et,jet]],[[jet,jet]]]	
SUS-12-024	8	19.4	T1bbbb	[[[b,b]],[[b,b]]]	
			Tittt	[[[t,t]],[[t,t]]]	
SUS-13-007	8	19.4	Tlutt	[[[t,t]],[[t,t]]]	
SUS-12-005 SUS-11-024	7	4.7	T2	[[jet]],[jet]]]	
SUS-13-006	8	19.5	T ChiWZ	[[W],[Z]]	
			TChiChipmStauStau	[[ta], [ta], [nu], [ta]]]	
			TSlepSlep	[[1+]],[1-]]]	
			TChiChipmSlepStau	[[L],[L]],[nu],[ta]]]	
			TChiChipmSlepL	2.*([[L],[L]],[[L],[nu]]] + [[[L],[L	
			T ChipChimSlepSnu	[[L-],[nu]],[[nu],[L+]]] + [[[L+],[n	
SUS-13-008	8	19.5	T6ttWW	[[[t],[W]],[[t],[W]]]	
			Tiuu	[[[t,t]],[[t,t]]]	
			T6bbZZ	[[b], Z], [b], Z]]]	
			T7btbtWW	[[b],t],[W]],[b],t],[W]]]	
			T5uu	[[[t],[t]],[[t],[t]]]	
SUS-13-013	8	19.5	T5WW	et jet [W], [et jet] W]]	
			T6ttWW	[[[t+],[W+]],[[t+],[W+]]]+[[[t-],[W+]	
			Tittt	[[[t+,t-]],[[t+,t-]]]	
			Tltsttst	[[[t+],[t-]],[t+],[t-]]+[[[t-],[t+]	
SUS-12-022	8	9.2	TChiWZ	[[[W]],[[Z]]]	
			TChiChipmStauStau	[[[ta],[ta]],[[nu],[ta]]]	
			TSlepSlep	[[]]+]],[]]-]]	
			T ChiChipmSlepStau	[[L],[L]],[[nu],[ta]]]	
			T ChiChipmSlepL	2.*([[L],[L]],[[L]],[[L],[nu]]] + [[[L],[L]])	
			T ChipChimSlepSnu	[[[L+],[nu]],[[nu],[L+]]] + [[[L+],[n	
SUS-11-022	7	4.98	T1bbbb	[[[b,b]],[[b,b]]]	
			T 2tt	[[[t]],[[t]]]	
			Tittt	[[[t,t]],[[t,t]]]	
			T2	[[]et]].[[jet]]]	
			T1	[[]et,jet]],[[jet,jet]]]	
			T2bb	[[b]],[b]]]	
SUS-12-028	8	11.7	T1bbbb	[[[b,b]],[[b,b]]]	
			T2tt	[[[t]],[[t]]]	
			Tiutt	[[[t,t]],[[t,t]]]	Situatio
			T2	[[]et]].[[jet]]]	w/ ~ \w
			T1	[[]et,jet],[[jet,jet]]]	
			T2bb	[[[b]],[[b]]]	- ▲日 > ▲圖 > ▲ 画 > ▲ 画 > 今 今 ④
	(LI I		· ·)	Simplified Medels Application	ÖDC /SDS 2012 17 / 15
	(ni	- 01	, ,	Simplified wodels - Application	