On the Coverage of the pMSSM with

Simplified Models

(preliminary results)

Ursula Laa

LPSC Grenoble & LAPTh Annecy in collaboration with Federico Ambrogi, Sabine Kraml, Suchita Kulkarni, Andre Lessa, Wolfgang Waltenberger

> (Re)interpretation Workshop CERN - June 2016

ATLAS pMSSM Scan

- Random scan in 19 free parameters, in reach of LHC8
- Sampling such that after selection similar number of points with Bino-, Wino- and Higgsino-like LSP remain
- SLHA files + exclusion information available on HepData !

LSP type	Definition	Sampled	Simu	Weight			
LSI type	Demitton	Sampica	Number	Fraction	() eight		
'Bino-like'	$N_{11}^2 > \max(N_{12}^2, N_{13}^2 + N_{14}^2)$	480×10^{6}	103,410	35%	1/24		
'Wino-like'	$N_{12}^2 > \max(N_{11}^2, N_{13}^2 + N_{14}^2)$	120×10^{6}	80,233	26%	1		
'Higgsino-like'	$(N_{13}^2 + N_{14}^2) > \max(N_{11}^2, N_{12}^2)$		126,684	39%	1		
Total		500×10^{6}	310,327				

arXiv:0812.0980 arXiv:1206.4321 arXiv:1211.1981 arXiv:1407.4130 arXiv:1508.06608

- Light gluino robustly constrained
- Well described by SMS exclusion, but constraints weakened in case of alternative decay chains and because of nondegenerate squarks

pMSSM coverage with SMS

Result Summary

Analysis	All LSPs	Bino-like	Wino-like	Higgsino-like
0-lepton + 2–6 jets + $E_{\rm T}^{\rm miss}$	32.1%	35.8%	29.7%	33.5% 🖌
0-lepton + 7–10 jets + $E_{\rm T}^{\rm miss}$	7.8%	5.5%	7.6%	8.0%
$0/1$ -lepton + 3b-jets + $E_{\rm T}^{\rm miss}$	8.8%	5.4%	7.1%	10.1% 🗸
1-lepton + jets + $E_{\rm T}^{\rm miss}$	8.0%	5.4%	7.5%	8.4%
Monojet	9.9%	16.7%	9.1%	10.1% 🗡
SS/3-leptons + jets + $E_{\rm T}^{\rm miss}$	2.4%	1.6%	2.4%	2.5%
$\tau(\tau/\ell)$ + jets + $E_{\rm T}^{\rm miss}$	3.0%	1.3%	2.9%	3.1%
0-lepton stop	9.4%	7.8%	8.2%	10.2% 🖌
1-lepton stop	6.2%	2.9%	5.4%	6.8%
$2b$ -jets + $E_{\rm T}^{\rm miss}$	3.1%	3.3%	2.3%	3.6% 🗸
2-leptons stop	0.8%	1.1%	0.8%	0.7%
Monojet stop	3.5%	11.3%	2.8%	3.6%
Stop with Z boson	0.4%	1.0%	0.4%	0.5%
$tb+E_{\rm T}^{\rm miss}$, stop	4.2%	1.9%	3.1%	5.0%
ℓh , electroweak	0	0	0	0 🗸
2-leptons, electroweak	1.3%	2.2%	0.7%	1.6% 🖌
2- τ , electroweak	0.2%	0.3%	0.2%	0.2%
3-leptons, electroweak	0.8%	3.8%	1.1%	0.6% 🖌
4-leptons	0.5%	1.1%	0.6%	0.5%
Disappearing Track	11.4%	0.4%	29.9%	0.1% 🗡
Long-lived particle	0.1%	0.1%	0.0%	0.1% 🗡
$H/A \to \tau^+ \tau^-$	1.8%	2.2%	0.9%	2.4% 🗶
Total	(40.9%)	40.2%	45.4%	38.1%

Multijet + MET

Monojet (mostly overlapping with Multijet exclusion)

Stop searches

(less important, stop mostly heavy following Higgs constraints)

Disappearing tracks (important for Wino-like LSP!)

41% of the points excluded by ATLAS

How well can they be covered using Simplified Models?

pMSSM coverage with SMS

Results from SModelS

- Run SModelS on points excluded by ATLAS
- Database includes results from 20 ATLAS and 17 CMS searches at 8 TeV + efficiency maps generated by Fastlim
- Discard points with non-prompt decays

:

Results:

	Bino LSP	Higgsino LSP	
# points excluded by ATLAS	42039	48703	SModelS: arXiv:1312.4175 arXiv:1412.1745
<pre># points excluded by SModelS</pre>	18461	25260	talk by Andre Lessa
coverage in SModelS	44% PRFI IN	52%	on Wed. & <u>smodels.hephy.at</u>

Coverage as Function of Gluino Mass

Coverage for points with gluino mass below 1 TeV

- 50 % for Bino-like LSP
- 75 % for Higgsino-like LSP

Light Gluinos escaping SMS constraints

long cascade decays

- at least 4 mass parameters
- asymmetric branches likely

one step decays via squarks

- both gluino pair production and gluino squark have large cross section
- both not constrained by generic SMS

+ decays to heavy neutralinos or chargino

Gluino decays into long cascades

 $\sigma \times BR$ from gluino production followed by long cascade decay (more than one intermediate particle), for all points allowed by SModelS

Bino LSP

Higgsino LSP

- Simplified Model approach not efficient (need to cover at least 4 dimensional parameter space, as well as asymmetric branches)
- Existing SMS results presented in one mass plane only

best constrained using event simulation

Gluino one step decays via squarks

- Constraints on light squarks considerably weakened if there are not 8 mass degenerate states
- Currently no generic SMS results for gluino decays via on-shell squarks available
- Points with light gluinos & squarks can escape all SMS constraints

 $\sigma \times BR$ for allowed points with Bino-like LSP, as function of gluino and LSP mass

Gluino-Squark Simplified Model in ATLAS

Only valid for 8 degenerate squarks !

Only valid if $m_{\tilde{q}} = 0.96 m_{\tilde{g}}$

Covers 3 values of LSP mass

(from ATLAS-SUSY-2014-06)

- Use efficiency maps to combine various production channels for arbitrary number of light squarks
- Generate efficiency maps with 3 free parameters: gluino mass, squark mass, LSP mass

Conclusions

- Within SModelS SMS results can exclude about 45-50% of pMSSM parameter points excluded by ATLAS
- Light gluinos are robustly constrained by ATLAS
- They can escape SMS exclusion if
 - decays via long cascades are dominant (SMS approach no longer effective as number of free parameters grows)
 - decays via (combinations of) charginos and heavy neutralinos are dominant
 - gluino decay into non-degenerate light squarks possible
- Constraints can be improved using efficiency maps, taking into account as many (short) decays as possible ("home-grown" efficiency maps by SModelS foreseen)
- Parameter points where long cascade decays are dominant are best constrained using event simulation

BACKUP

ATLAS pMSSM Scan - Details

Parameter	Min value	Max value	Note	
$m_{\tilde{L}_1}(=m_{\tilde{L}_2})$	90 GeV	4 TeV	Left-handed slepton (first two gens.) mass	
$m_{\tilde{e}_1}(=m_{\tilde{e}_2})$	90 GeV	4 TeV	Right-handed slepton (first two gens.) mass	
$m_{\tilde{L}_3}$	90 GeV	4 TeV	Left-handed stau doublet mass	
$m_{\tilde{e}_3}$	90 GeV	4 TeV	Right-handed stau mass	
$m_{\tilde{Q}_1}(=m_{\tilde{Q}_2})$	200 GeV	4 TeV	Left-handed squark (first two gens.) mass	
$m_{\tilde{u}_1}(=m_{\tilde{u}_2})$	200 GeV	4 TeV	Right-handed up-type squark (first two gens.) mass	
$m_{\tilde{d}_1}(=m_{\tilde{d}_2})$	200 GeV	4 TeV	Right-handed down-type squark (first two gens.) mass	Parameter
$m_{\tilde{Q}_3}$	100 GeV	4 TeV	Left-handed squark (third gen.) mass	Δρ
$m_{\tilde{u}_3}$	100 GeV	4 TeV	Right-handed top squark mass	$\Delta(q-2)_{\prime\prime}$
$m_{\tilde{d}_3}$	100 GeV	4 TeV	Right-handed bottom squark mass	$BR(b \to s\gamma)$
$ M_1 $	0 GeV	4 TeV	Bino mass parameter	$BR(B_s \to \mu^+ \mu^-)$
$ M_2 $	70 GeV	4 TeV	Wino mass parameter	$BR(B^+ \to \tau^+ \nu)$
$ \mu $	80 GeV	4 TeV	Bilinear Higgs mass parameter	$\frac{DR(D \to t \to t_{\tau})}{\Omega_{\alpha}h^2}$
M_3	200 GeV	4 TeV	Gluino mass parameter	$\frac{\Sigma \tilde{\chi}_1^{0n}}{\Gamma}$
$ A_t $	0 GeV	8 TeV	Trilinear top coupling	I invisible(SUSY)(Z)
$ A_b $	0 GeV	4 TeV	Trilinear bottom coupling	Masses of charged sparticles
$ A_{\tau} $	0 GeV	4 TeV	Trilinear τ lepton coupling	$m(\chi_1^{\perp})$
M_A	100 GeV	4 TeV	Pseudoscalar Higgs boson mass	$m(\tilde{u}_{1,2}, d_{1,2}, \tilde{c}_{1,2}, \tilde{s}_{1,2})$
$\tan\beta$	1	60	Ratio of the Higgs vacuum expectation values	m(h)

Parameter	Minimum value	Maximum value
Δho	-0.0005	0.0017
$\Delta(g-2)_{\mu}$	-17.7×10^{-10}	43.8×10^{-10}
$BR(b \to s\gamma)$	2.69×10^{-4}	3.87×10^{-4}
$\mathrm{BR}(B_s \to \mu^+ \mu^-)$	1.6×10^{-9}	4.2×10^{-9}
$\mathrm{BR}(B^+ \to \tau^+ \nu_\tau)$	66×10^{-6}	161×10^{-6}
$\Omega_{ ilde{\chi}_1^0} h^2$	—	0.1208
$\Gamma_{\text{invisible}(\text{SUSY})}(Z)$		2 MeV
Masses of charged sparticles	100 GeV	
$m(\tilde{\chi}_1^{\pm})$	103 GeV	
$m(\tilde{u}_{1,2}, \tilde{d}_{1,2}, \tilde{c}_{1,2}, \tilde{s}_{1,2})$	200 GeV	
m(h)	124 GeV	128 GeV

Gluino decays into chargino / heavy neutralino

Sum of branching ratios of gluino decays into chargino and heavy neutralino, for all points allowed by SModelS

- often more than one channel important
- decay via chargino considered by ATLAS & CMS but typically interpretation in one (or two) mass planes only
- e.g. in ATLAS-SUSY-2014-06

Classification of BRs for Bino LSP

pMSSM coverage with SMS

Gluino one step decays via squarks

 $\sigma \times BR$ for allowed points with Bino-like LSP, as function of gluino and squark mass

148832733.slha

	Exampl	le	poi	nts
--	--------	----	-----	-----

489804839.slha

BLOCK MASS # Mass Spectrum		
# PDG code mass	particle	
1000001 7.37182646E+02	# ~d L	
2000001 1.17572389E+03	# ~d_R #	
1000002 7.33259013E+02	# ~u L DECA	()
2000002 5.02158051E+02	# ~u_R #	
1000003 7.37182646E+02	# ~s_L	
2000003 1.17572389E+03	# ~s_R	
1000004 7.33259013E+02	# ~c_L #	
2000004 5.02158051E+02	# ~c_R DECA	1)
1000005 3.86685459E+03	# ~b_1 #	
2000005 4.00843110E+03	# ~b_2	
1000006 2.74516322E+03	# ~t_1	
2000006 3.93556802E+03	# ~t_2	
1000021 6.51578232E+02	#~g	
1000022 4.87251524E+02	# ~chi_10	
1000023 8.85267547E+02	# ~chi_20	
1000025 –3.97532163E+03	# ~chi_30	
1000035 3.97575507E+03	# ~chi_40	
1000024 8.85433637E+02	# ~chi_1+	
1000037 3.97611803E+03	# ~chi_2+	
# PDG Width		
DECAY 1000021 5.10223642E+00	# gluino decays	
# BR NDA ID1	ID2	
2.50004966E-01 2 20000	02 -2 # BR(~g -> ~u_R ub)	
2.50004966E-01 2 -20000	02 2 # BR(~g -> ~u_R* u)	
2.49995034E-01 2 20000	04 $-4 \# BR(\sim g \rightarrow \sim c_R cb)$	
2.49995034E-01 2 -20000	04 4 $\# BR(\sim g \rightarrow \sim c_R * c)$	
# PDG Width		
DECAY 2000002 4.42213104E-03	<pre># sup_R decays</pre>	
# BR NDA ID1	ID2	
1.0000000E+00 2 10000	22 2 # BR(~u_R -> ~chi_10 u	u
# PDG Width		
DECAY 2000004 4.03417627E-03	<pre># scharm_R decays</pre>	
# BR NDA ID1	ID2	
1.0000000E+00 2 10000	22 4 # BR(~c_R -> ~chi_10 d	С

Missin	ng topol	ogies with	the highest cross-sections (up to 10):
Sarts	(TeV)	Weight (fb	
8.0	1.554E	+03 #	[[[jet]],[[jet]]]
8.0	7.577E	+02	[[[jet],[jet]],[[jet],[jet],[jet]]]
8.0	5.975E		[[[jet],[jet]],[[jet],[jet]]]

#	PDG	Width											
DECAY	1000021	2.03434400E-06	#	t gluino	deca	ys							
#	BR	NDA ID1		ID2									
	5.49161306E-01	2 10000	22	23	L #	BR	(~g –	> ~(chi_1	0 g)		
#	BR	NDA ID	1	ID2		I	D3						
	9.37815416E-02	3 10000	22		L		-1	# E	3R(∼g	->	~chi_10	d	db)
	1.31630911E-01	3 10000	22		2		-2	# E	3R(∼g	->	~chi_10	u	ub)
	9.37815416E-02	3 10000	22		3		-3	# E	3R(∼g	->	~chi_10	S	sb)
	1.31630911E-01	3 10000	22	4	1		-4	# E	3R(∼g	->	~chi_10	С	cb)
	1.37878757E-05	3 10000	22		5		-5	# E	3R(∼g	->	~chi_10	b	bb)
#	PDG	Width											
DECAY	1000002	5.59851584E-02	#	t sup_L (decay	S							
#	BR	NDA ID1		ID2									
	7.32421070E-02	2 10000	22		2 #	BR	l(∼u_L	->	~chi	_10	u)		
	9.26757893E-01	2 10000	21		2 #	BR	(∼u_L	->	~g		u)		
#	PDG	Width											
DECAY	1000001	1.16431353E-01	#	^t sdown_l	_ dec	ays							
#	BR	NDA ID1		ID2									
	3.97733028E-02	2 10000	22		L #	BR	(~d_L	->	~chi	_10	d)		
	9.60226697E-01	2 10000	21		L #	BR	(~d_L	->	~g		d)		
ub) u) cb) c) _10 u)	# PDG code 1000001 2000001 1000002 2000002 1000003 2000003 1000004 2000004 2000004 1000005 2000005 1000005 1000021 1000023 1000023 1000025 1000025 1000024 1000024 1000024	5 1 5 2 5 1 5 2 3 2 3 2 3 5 -1 1 -3 1	mas .7427812 .1547217 .6968834 .0750201 .7427812 .1547217 .6968834 .0750201 .1300369 .1513803 .1099877 .0821282 .6012000 .0269136 .8363355 .8377418 .6253746 .8358332 .6255402	s 4E+02 3E+02 4E+02 4E+02 3E+02 3E+02 4E+02 4E+02 2E+02 9E+02 1E+02 7E+02 5E+02 8E+02 7E+0	233233233333333333333333333333333333333	parti # ~d_ ~u_ # ~u_ ~vu_ ~vu_ ~vu_ ~vu_ ~vu_ ~vu_ ~vu_ ~	icle _L _R _L _R _L _R _L _R _L _R _1 _2 _1 _2 _1 _2 _1 _2 _1 _2 _1 _2	0 0 0 0 ++++				
_10 c	Missing top Sqrts (TeV) 8.0 9.66 8.0 7.92 8.0 7.46 8.0 6.12 8.0 3.88	Pologies with th Weight (fb) 4E+02 # 7E+02 # 6E+02 # 9E+02 # 5E+02 #	ie h	ighest c Elem	ross- ent ([[[jet]]	-se des [[j [[j t], [j	ctions cripti [[[jet et]], et],[j [jet,j et]],	ion [[je [[jet] [[jet]	<pre></pre>	10)	: jet]]] jet]]] jet]]] jet]]] jet]]]		

Ursula Laa