Constraining Low Fine Tuned Supersymmetric Models With Simplified Models Spectra Results Based On CMS And ATLAS Searches

Veronika Magerl

Application for PhD Position HEPHY: Measurement of quarkonium production to probe QCD at the LHC

October 09, 2015

Introduction

A tool for interpreting simplified model results from the LHC http://smodels.hephy.at/wiki/SModelS

Sabine Kraml, Suchita Kulkarni, Ursula Laa, Andre Lessa, Veronika Magerl, Wolfgang Magerl, Doris Proschofsky, Michael Traub, Wolfgang Waltenberger

Laboratoire de Physique Subatomique et de Cosmologie

Motivation – The Simplified Model Spectra (SMS) Approach SModelS Functionalities SModelS Formalism

The Low Fine Tuned Scenario

The LFT Model Set Application of SModelS Results and Interpretation

Motivation – The Simplified Model Spectra (SMS) Approach SModelS Functionalities SModelS Formalism

The Low Fine Tuned Scenario

The LFT Model Set Application of SModelS Results and Interpretation

► Experiment → SMS

- effective Lagrangian description, involves only a reduced number of SUSY particles
- ▶ purely phenomenological → parameters directly related to collider physics observables
- SUSY search results are presented as upper limit (UL) maps ⇒ hold 95%
 C.L. upper limits on topology weight (σ × BR) as function of masses of involved sparticles

$\blacktriangleright \text{ Theory} \rightarrow \text{full model}$

 constraining a full model by applying relevant SMS results is not straight forward
 SModelS

SMS = interpretation event counts in terms of specific decays

- effective Lagrangian description, involves only a reduced number of SUSY particles
- ▶ purely phenomenological → parameters directly related to collider physics observables
- SUSY search results are presented as upper limit (UL) maps ⇒ hold 95%
 C.L. upper limits on topology weight (σ × BR) as function of masses of involved sparticles

full model

 constraining a full model by applying relevant SMS results is not straight forward => SModelS

- SMS = interpretation event counts in terms of specific decays
 - effective Lagrangian description, involves only a reduced number of SUSY particles
 - purely phenomenological
 parameters directly related to collider physics observables
 - SUSY search results are presented as upper limit (UL) maps ⇒ hold 95%
 C.L. upper limits on topology weight (σ × BR) as function of masses of involved sparticles

full model

 constraining a full model by applying relevant SMS results is not straight forward => SModelS

- SMS = interpretation event counts in terms of specific decays
 - effective Lagrangian description, involves only a reduced number of SUSY particles
 - ▶ purely phenomenological → parameters directly related to collider physics observables
 - SUSY search results are presented as upper limit (UL) maps ⇒ hold 95%
 C.L. upper limits on topology weight (σ × BR) as function of masses of involved sparticles

full model

 constraining a full model by applying relevant SMS results is not straight forward => SModelS

- SMS = interpretation event counts in terms of specific decays
 - effective Lagrangian description, involves only a reduced number of SUSY particles
 - ▶ purely phenomenological → parameters directly related to collider physics observables
 - SUSY search results are presented as upper limit (UL) maps \Rightarrow hold 95% C.L. upper limits on **topology weight** ($\sigma \times BR$) as function of masses of involved sparticles

full model

 constraining a full model by applying relevant SMS results is not straight forward => SModelS

ATLAS-SUSY-2013-05: upper limit map for T2bb model of ATLAS 2b-jets + $\not \! E_T$ analysis

- SMS = interpretation event counts in terms of specific decays
 - effective Lagrangian description, involves only a reduced number of SUSY particles
 - ▶ purely phenomenological → parameters directly related to collider physics observables
 - SUSY search results are presented as upper limit (UL) maps ⇒ hold 95% C.L. upper limits on topology weight (σ × BR) as function of masses of involved sparticles

ATLAS-SUSY-2013-05: upper limit map for T2bb model of ATLAS 2b-jets + $\not \in_T$ analysis

- ► full model (e.g. the pMSSM) provides mass spectrum and decay patterns for whole set of BSM states ⇒ includes contributions of several SMS topologies
- constraining a full model by applying relevant SMS results is not straight forward => SModelS

- SMS = interpretation event counts in terms of specific decays
 - effective Lagrangian description, involves only a reduced number of SUSY particles
 - ▶ purely phenomenological → parameters directly related to collider physics observables
 - SUSY search results are presented as upper limit (UL) maps ⇒ hold 95% C.L. upper limits on topology weight (σ × BR) as function of masses of involved sparticles

- ► full model (e.g. the pMSSM) provides mass spectrum and decay patterns for whole set of BSM states ⇒ includes contributions of several SMS topologies
- constraining a full model by applying relevant SMS results is not straight forward
 SModelS

Basic Concepts

SModelS: general procedure to decompose \mathbb{Z}_2 symmetric BSM collider signatures into SMS topologies

► SMS assumption: acceptance times efficiency (A × ϵ) and kinematics of a process are function of BSM masses, do not depend on other characteristics ⇒ possibility to map the signal of a full BSM model point onto its signal topologies

3 basic ingredients define point in the parameter space:

- 1. mass spectrum
- 2. production cross sections σ_{prod} of involved BSM particles
- 3. branching ratios *BR* for all possible decays

Basic Concepts

"SModelS: a tool for interpreting simplified- model results from the LHC and its application to supersymmetry" arXiv:1312.4175

"SModelS v1.0: a short user guide" arXiv:1412.1745

SModelS method of operating:

- 1. input of a full theoretical \mathbb{Z}_2 symmetric model
- 2. decomposition into its signal topologies
- 3. combination of topologies and comparison against the experimental database

 \Rightarrow overview of the status of the current SUSY searches and identification of **blind spots** in the parameter space

SModelS Formalism

Constraints (a model independent, terse and clearly structured labelling system)

constraints

- start with arbitrary SMS topology
- overall structure determined by R-parity conservation:

[[branch I],[branch II]]

empty bracket is inserted for every vertex in a branch:

[[[]],[[]]]

 specification by means of outgoing SM particles in every vertex:
 [[[l, v]],[[Z]]]

SModelS Formalism

Constraints (a model independent, terse and clearly structured labelling system)

- start with arbitrary SMS topology
- overall structure determined by R-parity conservation:

[[branch I],[branch II]]

empty bracket is inserted for every vertex in a branch:

[[[]],[[]]]

 specification by means of outgoing SM particles in every vertex:
 [[[l, v]],[[Z]]]

SModelS Formalism

Constraints (a model independent, terse and clearly structured labelling system)

- start with arbitrary SMS topology
- overall structure determined by R-parity conservation:
 - [[branch I],[branch II]]
- empty bracket is inserted for every vertex in a branch:

[[[]],[[]]]

 specification by means of outgoing SM particles in every vertex:
 [[[l, v]],[[Z]]]

Constraints (a model independent, terse and clearly structured labelling system)

- start with arbitrary SMS topology
- overall structure determined by R-parity conservation:

[[branch I],[branch II]]

empty bracket is inserted for every vertex in a branch:

[[[]],[[]]]

 specification by means of outgoing SM particles in every vertex:
 [[[l, v]],[[Z]]]

Constraints (a model independent, terse and clearly structured labelling system)

- start with arbitrary SMS topology
- overall structure determined by R-parity conservation:

[[branch I],[branch II]]

empty bracket is inserted for every vertex in a branch:

[[[]],[[]]]

 specification by means of outgoing SM particles in every vertex:
 [[[l, v]],[[Z]]]

Constraints (a model independent, terse and clearly structured labelling system)

- start with arbitrary SMS topology
- overall structure determined by R-parity conservation:

[[branch I],[branch II]]

empty bracket is inserted for every vertex in a branch:

[[[]],[[]]]

 specification by means of outgoing SM particles in every vertex:
 [[[ℓ, ν]],[[Ζ]]]

Constraints (a model independent, terse and clearly structured labelling system)

- start with arbitrary SMS topology
- overall structure determined by R-parity conservation:

[[branch I],[branch II]]

empty bracket is inserted for every vertex in a branch:

[[[]],[[]]]

 specification by means of outgoing SM particles in every vertex:
 [[[ℓ, ν]],[[Ζ]]]

mass vector (for each branch) links the

topology to the BSM states involved:

$$[[M'_1, M'_2], [M''_1, M''_2]]$$

SModelS Formalism

Taking into account Analyses Assumptions

<u>CMS-SUS-13-006</u>: upper limit map of CMS eweakino analysis for TChiWZ model

SModelS Formalism

Taking Into Account Analyses Assumptions

CMS-SUS-13-006: upper limit map of CMS eweakino analysis for TChiWZ model

analysis: masses are assumed to be equal

SModelS mass vector: $[[m_{\tilde{\chi}_{1}^{\pm}}/m_{\tilde{\chi}_{2}^{0}}, m_{\tilde{\chi}_{1}^{0}}], [m_{\tilde{\chi}_{1}^{\pm}}/m_{\tilde{\chi}_{2}^{0}}, m_{\tilde{\chi}_{1}^{0}}]]$ • analysis: combined on- and off-shell region $\tilde{\chi}^{\pm}, \tilde{\chi}_{2}^{0} \rightarrow W^{(*)}\tilde{\chi}_{1}^{0}, Z^{(*)}\tilde{\chi}_{1}^{0}$ • SModelS constraints:

SModelS Formalism

Taking Into Account Analyses Assumptions

<u>CMS-SUS-13-006</u>: upper limit map of CMS eweakino analysis for TChiWZ model

 analysis: masses are assumed to be equal

 $\begin{array}{l} \textbf{SModelS mass vector:} \\ [[m_{\widetilde{\chi}_1^{\pm}}/m_{\widetilde{\chi}_2^0}, m_{\widetilde{\chi}_1^0}]], [m_{\widetilde{\chi}_1^{\pm}}/m_{\widetilde{\chi}_2^0}, m_{\widetilde{\chi}_1^0}]] \end{array}$

 analysis: combined on- and off-shell region

$$\widetilde{\chi}^{\pm}, \widetilde{\chi}_{2}^{0} o W^{(*)} \widetilde{\chi}_{1}^{0}, \mathsf{Z}^{(*)} \widetilde{\chi}_{1}^{0} \ \downarrow$$

SModelS constraints: only information about final states

SModelS Formalism

Taking Into Account Analyses Assumptions

<u>CMS-SUS-13-006</u>: upper limit map of CMS eweakino analysis for TChiWZ model

 analysis: masses are assumed to be equal

 $\begin{array}{l} \textbf{SModelS mass vector:} \\ [[m_{\widetilde{\chi}_1^{\pm}}/m_{\widetilde{\chi}_2^0}, m_{\widetilde{\chi}_1^0}]], [m_{\widetilde{\chi}_1^{\pm}}/m_{\widetilde{\chi}_2^0}, m_{\widetilde{\chi}_1^0}]] \end{array}$

analysis: combined on- and off-shell region

$$\widetilde{\chi}^{\pm}, \widetilde{\chi}_{2}^{0} o W^{(*)} \widetilde{\chi}_{1}^{0}, \mathsf{Z}^{(*)} \widetilde{\chi}_{1}^{0} \ \downarrow$$

SModelS constraints:

only information about final states $\ \rightarrow$ result described by:

constraint: TchWZoff 71.*([[['mu+','mu-']],[['1','nu']]]) [[['e+','e-']],[['1','nu']]])

Decomposition (a minimal example)

 $[[[\mu^-, \mu^+]], [[e, \nu]]] \quad [[[\mu^-, \mu^+]], [[\mu, \nu]]] \quad \dots \quad [[[\tau^-, \tau^+]], [[q, q]]] \quad [[[q, q]], [[q, q]]]$

RESULTS DATABASE: CMS eweakino analysis (CMS-SUS-13-006) for TChiWZ

71.*([[['mu+','mu-']],[['l','nu']]] * [[['e+','e-']],[['l','nu']]))

constraint: TChiWZoff

SModelS

Decomposition (a minimal example)

SModelS Formalism

 $[[[\mu^-, \mu^+]], [[e, \nu]]] \quad [[[\mu^-, \mu^+]], [[\mu, \nu]]] \quad \dots \quad [[[\tau^-, \tau^+]], [[q, q]]] \quad [[[q, q]], [[q, q]]]$

SModelS Formalism

Decomposition (a minimal example)

Decomposition (a minimal example)

Decomposition (a minimal example)

	_	
CODCTED		Million Contra
DUDINI A		

71.*([[['mu+','mu-']],[['l','nu']]] + [[['e+','e-']],[['l','nu']]])

RESULTS DATABASE: CMS eweakino analysis (CMS-SUS-13-006) for TChiWZ

Decomposition (a minimal example)

$$rac{(\sigma imes \textit{BR})_{theory}}{(\sigma imes \textit{BR})_{\textit{UL}}} \left\{ egin{array}{c} > 1 \ < 1 \end{array}
ight.$$

missing topologies
[[[tau,tau]],[[jet,jet]]]
[[[jet,jet]],[[jet,jet]]]

excluded - not excluded

constraint: TChiWZoff

71.*([[['mu+','mu-']],[['l','nu']]] + [[['e+','e-']],[['l','nu']]])

RESULTS DATABASE: CMS eweakino analysis (CMS-SUS-13-006) for TChiWZ

Decomposition (a minimal example)

$$rac{(\sigma imes \textit{BR})_{theory}}{(\sigma imes \textit{BR})_{\textit{UL}}} \left\{ egin{array}{c} > 1 \ < 1 \end{array}
ight.$$

excluded - not excluded

missing topologies
[[[tau,tau]],[[jet,jet]]]
[[[jet,jet]],[[jet,jet]]]

blind spots

constraint: TChiWZoff

71.*([[['mu+','mu-']],[['l','nu']]] + [[['e+','e-']],[['l','nu']]])

RESULTS DATABASE: CMS eweakino analysis (CMS-SUS-13-006) for TChiWZ

Motivation – The Simplified Model Spectra (SMS) Approach SModelS Functionalities SModelS Formalism

The Low Fine Tuned Scenario

The LFT Model Set Application of SModelS Results and Interpretation The Low Fine Tuned Scenario The LFT Model Set

Why investigating a Low Fine Tuning Scenario?

fine tuning = parameter must be chosen very carefully to predict "right value" for observable

e.g. electroweak symmetry breaking in pMSSM \Rightarrow tension between masses of stop, lightest Higgs and Z boson $\Rightarrow m_{\tilde{t}}, m_{\tilde{g}}, \mu$ should be light

- ► finely tuned theory seems unnatural ⇒ consensus about tolerable amount of fine tuning grows with experimental constraints on SUSY particles ⇒
 - Has the parameter space of the pMSSM that could provide LFT model points already been targeted by current interpretations of SUSY searches at LHC?
 - How can experimental results be reinterpreted in order to improve their applicability on such LFT model points?
 - Which **additional interpretations** may be beneficial in order to probe this region of parameter space in the current $\sqrt{s} = 13$ TeV run of the LHC?

\Rightarrow investigation of such a scenario using SModelS

Model Selection

- SLHA files originally created for: "pMSSM Studies at the 7, 8 and 14 TeV LHC" (arXiv:1307.8444[hep-ph])
- LFT scenario = small subset of bigger set of randomly generated pMSSM points subjected to various experimental and theoretical constraints, e.g.
 - "correct" relic density ($\Omega h^2 = 0.1153 \pm 0.095$)
 - "correct" SM Higgs mass ($m_h = 126 \pm 3 \text{ GeV}$)
 - low amount of fine tuning better than 1% measured by the Ellis-Barbieri-Giudice parameter
- ▶ 10.2×10^3 models survived this selection procedure

Nature of the $\tilde{\chi}_1^0$

- contributions of wino can be neglected
- generally neutralino is heavily mixed

▶ roughly 60% of all models have LSP masses below gap → bino LSP around $m_{\chi_1^0} \simeq 50 \text{ GeV}$

- 40% show bino higgsino mixture with tendency to higher fractions of bino content
- nature of the LSP determined by the mechanisms to achieve correct relic density

The Low Fine Tuned Scenario Application of SModelS

Applying SModelS to the LFT Model Set

- ► calculate **production cross sections** for $\sqrt{s} = 8$ TeV using SModelS' internal **cross section computer** (based on Pythia and NLLfast) $\Rightarrow \sigma_{theory}$
- ▶ subject every model point to **decomposition** \Rightarrow ($\sigma \times BR$)_{theory}
- confront it with full results database $\Rightarrow (\sigma \times BR)_{UL}$
- interpret SModelS output to:
 - sort model points into "excluded" and "not excluded"

$$\frac{(\sigma \times BR)_{theory}}{(\sigma \times BR)_{UL}} \qquad \left\{ \begin{array}{cc} > 1 & excluded \\ < 1 & not \ excluded \end{array} \right.$$

- find most relevant experimental results
- Find missing topologies = signal topologies without experimental constraints → sum over all signal topologies described by same constraint → information about involved SUSY particles is lost

Investigation of Excluded Models

Which experimental results have highest significance in the LFT scenario? \Rightarrow concentrate on the excluded points:

- every excluded model point is projected onto the respective mass plane
- topologies irrelevant to a given mass plane are ignored
- plots are overlaid with official exclusion lines for most relevant results

 $m_{\widetilde{\chi}_1^{\pm}} - m_{\widetilde{\chi}_1^0}$ plane

- ► most interesting topology: **TChiWZ** $(\tilde{\chi}^{\pm}, \tilde{\chi}_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}, Z\tilde{\chi}_{1}^{0})$
- kinematic edge for W (Z) boson indicated by dashed (dotted) line
- ► <u>W/Z on-shell</u>: ATLAS 3 leptons (e, μ, τ) + ∉_T
- <u>W/Z off-shell</u>: CMS EW productions with decays to leptons, W, Z and Higgs

Constraining Mass of \tilde{t} – Missing Topologies

- ▶ most frequent topologies in $m_{\tilde{t}_1} m_{\tilde{\chi}_1^0}$ plane
- relevant topologies show correlation with m_i.

Constraining Mass of t - Missing Topologies

Constraining Mass of \tilde{t} – Missing Topologies

19/21

Constraining Mass of t – Missing Topologies

- ► current SMS interpretations of experimental SUSY searches are of **limited suitability** in LFT scenario ⇒ only 22% of all points excluded
- model set dominated by various eweakino decays producing mostly hadronically decaying W, Z and Higgs bosons
- ▶ final states of gluino decays with tops, bottoms and W^(*)
- symmetric and asymmetric stop or sbottom topologies
- general assertions for future interpretations:
 - gluino decays with non-decoupled third generation squarks and vice versa
 - hadronic off-shell regime for SM vector bosons (events with multiple jets, zero-leptons and MET)

- ► current SMS interpretations of experimental SUSY searches are of **limited suitability** in LFT scenario ⇒ only 22% of all points excluded
- model set dominated by various eweakino decays producing mostly hadronically decaying W, Z and Higgs bosons
- final states of gluino decays with tops, bottoms and W^(*)
- symmetric and asymmetric stop or sbottom topologies
- general assertions for future interpretations:
 - gluino decays with non-decoupled third generation squarks and vice versa
 - hadronic off-shell regime for SM vector bosons (events with multiple jets, zero-leptons and MET)

- ► current SMS interpretations of experimental SUSY searches are of limited suitability in LFT scenario ⇒ only 22% of all points excluded
- model set dominated by various eweakino decays producing mostly hadronically decaying W, Z and Higgs bosons
- ▶ final states of gluino decays with tops, bottoms and W^(*)
- symmetric and asymmetric stop or sbottom topologies
- general assertions for future interpretations:
 - gluino decays with non-decoupled third generation squarks and vice versa
 - hadronic off-shell regime for SM vector bosons (events with multiple jets, zero-leptons and MET)

- ► current SMS interpretations of experimental SUSY searches are of **limited suitability** in LFT scenario ⇒ only 22% of all points excluded
- model set dominated by various eweakino decays producing mostly hadronically decaying W, Z and Higgs bosons
- final states of gluino decays with tops, bottoms and $W^{(*)}$
- symmetric and asymmetric stop or sbottom topologies
- general assertions for future interpretations:
 - gluino decays with non-decoupled third generation squarks and vice versa
 - hadronic off-shell regime for SM vector bosons (events with multiple jets, zero-leptons and MET)

- ► current SMS interpretations of experimental SUSY searches are of **limited suitability** in LFT scenario ⇒ only 22% of all points excluded
- model set dominated by various eweakino decays producing mostly hadronically decaying W, Z and Higgs bosons
- ▶ final states of gluino decays with tops, bottoms and W^(*)
- symmetric and asymmetric stop or sbottom topologies
- general assertions for future interpretations:
 - gluino decays with non-decoupled third generation squarks and vice versa
 - hadronic off-shell regime for SM vector bosons (events with multiple jets, zero-leptons and MET)

THANKS FOR YOUR ATTENTION!

BACK UP

SModelS SModelS Database

LFT Scan

LFT – General Considerations LFT – Model Set Results and Interpretation

Compression (invisible decays and soft final states)

invisible decays

- $m_{\tilde{\chi}_1^0}$ replaced by $m_{\tilde{\chi}_2^0}$
- ► [[[t], [W], [ν, ν̄]], [[b, b]]] replaced by [[[t], [W]], [[b, b]]]
- must occur at end of decay chain, no visible particle after the invisible one

soft final states

- if two BSM states can be seen as quasi degenerate
- energy of the SM particles produced is negligibly small from experimental point of view
- decay will be completely ignored and topology will be replaced by a simpler one

List of ATLAS Analyses

ID	short description	L	Tx names
ATLAS-SUSY-2013-02	0 leptons + 2–6 jets + $\not\!\!E_T$	20.3	T1, T2
ATLAS-SUSY-2013-04	0 leptons + \geq 7–10 jets + $\not\!\!\!E_T$	20.3	T1tttt
ATLAS-SUSY-2013-05	0 leptons + 2 b-jets + $\not\!\!E_T$	20.1	T2bb
ATLAS-SUSY-2013-11	2 leptons $(e, \mu) + \not \in_T$	20.3	TChiWZ, TSlepSlep
ATLAS-SUSY-2013-12	3 leptons $(e, \mu, \tau) + \not\!\!\! E_T$	20.3	TChiWH, TChiWZ(off)
ATLAS-SUSY-2013-14	2 taus + ∉ _T	20.3	TStauStau
ATLAS-SUSY-2013-15	1 lepton + 4(1 b-)jets + $\not\!\!E_T$	20.3	T2tt, T2bbWW
ATLAS-SUSY-2013-19	2 leptons + (b)jets + $\not\!\!E_T$	20.3	T2tt, T2bbWW,
			T6bbWW
ATLAS-CONF-2012-105	2 SS leptons + \geq 4 jets + $\not\!\!\!E_T$	5.7	T1tttt
ATLAS-CONF-2013-007	2 SS leptons + 0–3 b-jets + $\not\!\!\!E_T$	20.7	T1tttt
ATLAS-CONF-2013-024	0 lepton + 6 (2 b-)jets + $\not\!\!E_T$	20.5	T2tt
ATLAS-CONF-2013-061	0–1 leptons + \geq 3 b-jets + $\not\!\!E_T$	20.1	T1bbbb, T1tttt
ATLAS-CONF-2013-065	2 leptons + (b)jets + $\not\!\!E_T$	20.3	T2tt

SModelS Database

List of CMS Analyses

ID	short description	L	Tx names
CMS-SUS-12-024	0 leptons + ≥3(1 b-)jets + $\not \! E_T$	19.4	T1bbbb, T1tttt(off), T5tttt
CMS-SUS-12-028	jets + $\not\!\!\!E_T$, α_T	11.7	T1, T1bbbb, T1tttt, T2, T2bb
CMS-SUS-13-002	\geq 3 leptons (+jets) + $\not \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	19.5	T1tttt
CMS-SUS-13-006	EW productions with	19.5	TChiWZ(off),
	decays to leptons, W, Z,		TSlepSlep,
	and Higgs		TChiChipmSlepL,
			TChiChipmSlepStau
CMS-SUS-13-007	1 lepton + \geq 2 b-jets + $\not\!\!E_T$	19.3	T1tttt(off)
CMS-SUS-13-011	1 lepton + \geq 4(1 b-)jets + $\not\!\!E_T$	19.5	T2tt, T6bbWW
CMS-SUS-13-012	jet multiplicity + ₩ _T	19.5	T1, T1tttt(off), T2
CMS-SUS-13-013	2 SS leptons + (b-)jets + $\not\!\!E_T$	19.5	T1tttt(off),
CMS-PAS-SUS-13-008	3 leptons + (b)jets + $\not\!\!E_T$	19.5	T6ttWW, T1tttt
CMS-PAS-SUS-13-016	2 OS leptons + \geq 4(2b-)jets + $\not\!\!E_T$	19.7	T1tttt(off)
CMS-PAS-SUS-13-018	1–2 b-jets + $\not\!\!E_T$, M_{CT}	19.4	T2bb
CMS-PAS-SUS-13-019	hadronic $M_{\rm T2}$	19.5	T1, T1bbbb, T1tttt(off), T2, T2tt, T2bb
CMS-PAS-SUS-14-011	razor with b-jets	19.3	T1bbbb, T1tttt(off), T2tt

databaseBrowser

databaseBrowser = object oriented python package to access the results database suitable as command line tool and as part of **SModelS**

SModelS SModelS Database

LFT Scan

LFT – General Considerations LFT – Model Set Results and Interpretation

What is natural?

good physical theory should be "natural" \Rightarrow What is natural? \Rightarrow theories which require finely tuned parameters seem to be unnatural **hierarchy problem**: Yukawa coupling of fermion to the Higgs \Rightarrow squared mass of the Higgs boson at one loop level \Rightarrow naive characterisation of naturalness:

$$m_h^2 pprox m_{h\,\textit{bare}}^2 - Y_f^2 \Lambda^2 \xrightarrow{\Lambda pprox M_{Planck}} \mathcal{N} = rac{\delta m_h^2}{m_h^2} pprox 10^{34}$$

 \Rightarrow finely tuned cancellation is cured by SUSY up to logarithmic term tolerable amount of fine tuning is very subjective quantity \Rightarrow objective definition of fine tuning = Ellis-Barbieri-Giudice measure

$$\Delta = \left| \frac{p}{O(p)} \frac{\partial O(p)}{\partial p} \right|$$

effect of variation of parameter p on observable O(p): for large Δ a small change in p results in a severe change in O $\Rightarrow p$ has to be tuned very carefully LFT Scan LFT – General Considerations

Low Fine Tuning in the pMSSM

SUSY = natural solution to hierarchy problem but causes further fine tuning "little hierarchy problem": in pMSSM SUSY is explicitly broken at weak scale \Rightarrow two different types of mass terms in Higgs potential

- 1. SUSY preserving mass parameter $\left|\mu\right|^2$
- 2. soft masses for both Higgs doublets $m_{H_u}^2$ and $m_{H_d}^2$

 \Rightarrow tree level relation

$$m_Z^2 \approx \frac{m_{H_d}^2 - m_{H_u}^2 \tan\beta}{\tan^2\beta - 1} - |\mu|^2$$

1. Higgs doublets mix to form mass eigenstates \Rightarrow lightest neutral scalar h_0 needs positive corrections with dominant contributions from stops

$$\delta m_{h_0}^2 \propto Y_t \ln \left(rac{m_{ ilde{t}_1} m_{ ilde{t}_2}}{m_t^2}
ight)$$

- 2. leading contributions to m_{H_u} and m_{H_d} arise from Yukawa interactions of stops
- \Rightarrow tension between the masses of the stop, the lightest Higgs and the Z boson \Rightarrow potential fine tuning in pMSSM e.g. soft higgs mass parameters, the mass of the stop, the mixing in the stop sector etc.

LFT Scan LFT – Model Set

Nature of the $\tilde{\chi}^{\pm}$ and the electroweak sector

- ► lower bound on $m_{\tilde{\chi}_1^{\pm}}$ is given by the LEP limit $m_{\tilde{\chi}_1^{\pm}} > 103.5 \, \text{GeV}$
- 60% have a $\tilde{\chi}_1^{\pm}$ with $f(\tilde{H}^{\pm}) > 0.9$
- ► rest of models have mostly higgsino like \$\tilde{\cap{2}}_1^±\$
- infrequently models provide wino like chargino

- light higgsino parameter µ ⇒ degenerate m_{x1}⁰, m_{x2}⁰ and m_{x1}[±]
- eweakinos in diagonal region controlled by the µ parameter
- ▶ off diagonal region $(m_{\tilde{\chi}_1^0} \simeq 50 \text{ GeV})$ neutralino ≈ 100% bino
- ▶ difference between the higgsino fractions of \$\tilde{\chi}_1^0\$ and \$\tilde{\chi}_1^{\pm}\$ is minimised at diagonal

LFT Scan

LFT - Model Set

Nature of \tilde{t} and \tilde{b}

- stops are relatively light in the LFT scenario
- *t*₁ is mostly left handed for the bigger part of the models
- ► LH stops and sbottoms are enclosed in an SU(2) doublet \Rightarrow are close in mass in case \tilde{b}_1 is also mostly left handed

*b*₁ in a pure gauge eigenstate

- 80% of all models have a light sbottom that is left handed to more than 90%
- clearly RH for $m_{\widetilde{b}_1} < m_{\widetilde{t}_1}$

LFT Scan

LFT - Model Set

Typical Mass Spectrum of LFT Model Points

LFT Scan LFT

LFT – Model Set

Typical Decay Pattern of LFT Model Points

Investigation of Excluded Models

 $m_{\widetilde{g}} - m_{\widetilde{\chi}_1^0}$ plane

- ► most constraining analyses are CMS: hadronic M_{T2} and 1 lepton + ≥2 b-jets + ∉_T for gluino decays (T1, T1ttt and T1bbbb)
- excluded region way below official exclusions
- in LFT: typical masses and BR favour gluino decays via on-shell stops and sbottoms ⇒ nearly no T1tttt

$m_{\widetilde{q}_{min}} - m_{\widetilde{\chi}_1^0}$ plane

- ▶ most constraining: T2 ($\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$) results from **CMS** hadronic M_{T2} and **ATLAS** 0 leptons + 2–6 jets + \notin_{T}
- both analyses assume mass degenerate squarks and decoupled gluinos
- in LFT over-exclusion because:
 - gluinos not decoupled \Rightarrow increasing $\sigma(\tilde{q})$
 - squarks not degenerate $\Rightarrow m_{\tilde{q}_{min}}$

LFT Scan

Results and Interpretation

Investigation of Excluded Models $(m_{\tilde{b}_1} - m_{\tilde{\chi}_1^0} \text{ and } m_{\tilde{t}_1} - m_{\tilde{\chi}_1^0} \text{ plane})$

under-exclusion for stops

Stops (production and decay)

roughly 1% of the LFT models can be excluded by applying stop results (T2tt and T6bbWW) \rightarrow Why? \Rightarrow check model set:

- $\sigma_{production}$ for stop pair production \Rightarrow comparable to CMS reference cross sections
- number of models for most relevant decay channels
- \Rightarrow check missing topologies

Stops (Missing Topologies With Highest Weight)

Gluinos (production and decay)

gluino exclusion way below ATLAS and CMS exclusions \rightarrow one reason: common SMS results assume squarks decoupled but they are not in LFT scenario \Rightarrow check model set:

- additional production channels may increase σ
- slight preponderance above CMS reference cross sections but can be neglected

 increases number of possible decay channels (decays of gluinos via on-shell squarks are always favoured)

Gluinos (Most Frequent Missing Topologies)

- ► complex decay patterns ⇒ weights for individual gluino topologies are rather low and often restricted to small regions
- interesting decay channel: $\tilde{\mathbf{g}} \rightarrow \mathbf{bt} \tilde{\chi}^{\pm}$ (T5btbtWW or T7btbtWW)

Monojet

- missing topology characterised by single hadronic jet and MET final state
- co-production of a RH light flavoured squark and bino neutralino
- ► associated productions of strongly and weakly coupling sparticles → surprisingly it occurs in roughly 60% of all LFT model points
- vertex in Feynman graphs of production controlled by coupling
 \$\alpha\$ g' (coupling constant of U(1)_Y)
- annihilation processes of DM: squark mediated annihilation mode in early universe (before freeze-out)
 if monojet signature would be found at LHC

 \Rightarrow by measuring its coupling strength information about nature of LSP and its thermal relic